Input Design for Nonlinear Model Discrimination via Affine Abstraction

Kanishka Singh* Yuhao Ding** Necmiye Ozay** Sze Zheng Yong*

* School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287 (emails: {krsingh1,szyong}@asu.edu)
** Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, MI, 48109 (emails: {yuhding,necmiye}@umich.edu)

Abstract: This paper considers the design of separating input signals in order to discriminate among a finite number of uncertain nonlinear models. Each nonlinear model corresponds to a system operating mode, unobserved intents of other drivers or robots, or to fault types or attack strategies, etc., and the separating inputs are designed such that the output trajectories of all the nonlinear models are guaranteed to be distinguishable from each other under any realization of uncertainties in the initial condition, model discrepancies or noise. We propose a two-step approach. First, using an optimization-based approach, we over-approximate nonlinear dynamics by uncertain affine models, as abstractions that preserve all its system behaviors such that any discrimination guarantees for the affine abstraction also hold for the original nonlinear system. Then, we propose a novel solution in the form of a mixed-integer linear program (MILP) to the active model discrimination problem for uncertain affine models, which includes the affine abstraction and thus, the nonlinear models. Finally, we demonstrate the effectiveness of our approach for identifying the intention of other vehicles in a highway lane changing scenario.

Keywords: Input design, model discrimination, nonlinear systems, affine abstraction

1. INTRODUCTION

Recently, there is much public interest in the integration of smart systems into everyday lives. These systems that include smart homes, smart grids, intelligent transportation and smart cities, are essentially complex, integrated and interconnected engineered systems with multiple operating modes that are often not directly observed or measured; thus, they can be modeled as hidden mode hybrid systems. For example, autonomous vehicles/robots have no access to the intentions or decisions of other vehicles/humans [Sadigh et al. (2016); Yong et al. (2014); Ding et al. (2018)], while smart infrastructures are prone to different fault types [Harirchi and Ozay (2015); Cheong and Manchester (2015)] or attack modes [Pasqualetti et al. (2013); Yong et al. (2015); Harirchi et al. (2017b)]. In these scenarios, approaches for discriminating among these operating modes (or more generally, models of system behaviors) based on noisy observed measurements can have a significant impact on a broad range of applications in robotics, process control, medical devices, fault detection, etc.

Literature Review: The problem of discriminating among a set of models appears in a plethora of research areas such as fault detection, input-distinguishability and mode discernibility of hybrid systems, where the approaches in the literature can be grouped into passive and active methods.

Passive discrimination techniques seek the separation of the models regardless of the input [Lou and Si (2009); Rosa and Silvestre (2011); Yong et al. (2014); Harirchi et al. (2017a)], while active methods design a separating input such that the behaviors of different models are distinct. Specifically in the area of input design for active model discrimination, many approaches have been proposed with the goal of finding a small excitation that has a minimal effect on the desired behavior of the system, while guaranteeing the isolation of different fault models [Cheong and Manchester (2015); Šimandl and Punčochář (2009); Nikoukhah and Campbell (2006); Scott et al. (2014); Harirchi et al. (2017b); Ding et al. (2018)]. However, these methods are only applicable for known linear or affine models, and not for nonlinear or uncertain affine models that we consider in this work.

Another set of relevant literature pertains to abstractions of nonlinear systems as linear or affine models that over-approximates all possible original system behaviors, which is a common systematic approximation approach in the literature on hybridization [Asarin et al. (2007); Althoff et al. (2008); Dang et al. (2010)]. This is typically achieved by linear interpolation and over-approximating the interpolation errors as an additive bounded noise term, which may at times be a crude approximation.

Contributions: We propose a novel two-step approach to active model discrimination among a set of uncertain nonlinear models, consisting of the affine abstraction/over-
approximation and the corresponding input design problem. To the best of our knowledge, this problem is relatively unexplored in the literature.

First, to address the potential conservativeness of conventional abstraction/over-approximation methods, we propose an optimization-based approach to over-approximate nonlinear dynamics by uncertain affine models that are compactly described using interval-valued matrices/vectors, in contrast to only having a interval-valued affine vector. In particular, this uncertain affine model must preserve all the system behaviors of the original nonlinear dynamics such that any model discrimination guarantees for uncertain affine abstraction also hold for the original nonlinear models.

Next, using the resulting set of uncertain affine models, we propose a novel solution to the active model discrimination problem for uncertain affine models, which includes the affine abstraction. We show that this problem can be casted as a mixed-integer linear program (MILP), for which off-the-shelf optimization tools are readily available.

To our knowledge, this input design problem for uncertain affine models (an important problem on its own) has not been considered in the literature. Finally, we demonstrate the effectiveness of our approach for identifying the intention of other vehicles in a lane changing scenario.

2. PRELIMINARIES

2.1 Notation and Definitions

Let $x \in \mathbb{R}^n$ denote a vector and $M \in \mathbb{R}^{n \times m}$ a matrix, with transpose M^T and $M \geq 0$ denotes element-wise non-negativity. The vector norm of x is denoted by $\|x\|$, with $i \in \{1, 2, \infty\}$, while $0, I$ and I represent the vector of zeros, the vector of ones and the identity matrix of appropriate dimensions.

The diag and vec operators are defined for a matrix M as:

$$\text{diag}_i(M) = \begin{bmatrix} M_{i} & \cdots & M_{n} \end{bmatrix}^T,$$

$$\text{vec}_i(M) = \begin{bmatrix} M_{i}^T \end{bmatrix}.$$
In addition, we will consider a time horizon of length T and introduce some time-concatenated notations. The time-concatenated states and outputs are defined as

$$
\mathbf{z}_{t,T} = \mathbf{v}_{t,T}^T \mathbf{x}_{t,k_0}(k), \quad \mathbf{u}_{t,T} = \mathbf{v}_{t,T}^T \mathbf{u}(k),
$$

while the time-integrated inputs and noises are

$$
\mathbf{u}_{t,T} = \mathbf{v}_{t,T}^T \mathbf{u}(k), \quad \mathbf{d}_{t,T} = \mathbf{v}_{t,T}^T \mathbf{d}(k), \quad \mathbf{w}_{t,T} = \mathbf{v}_{t,T}^T \mathbf{w}(k).
$$

Using the above time-concatenated inputs, noise, states and outputs, the corresponding time-concatenated state and output equations can be written as:

$$
M_t \mathbf{x}_{t,T} + \mathbf{G}_{u,t} \mathbf{u}_{t,T} + \mathbf{G}_{d,t} \mathbf{d}_{t,T} + \mathbf{G}_w \mathbf{w}_{t,T} + \mathbf{F}_t \mathbf{z}_{t,T} + \mathbf{G}_s \mathbf{s}(k) = \mathbf{0},
$$

subject to constraints described by polyhedral sets (for $k \in \mathbb{Z}^+_0$) with c_w and c_d inequalities, respectively, given by (7) and (8). Similarly, the process noise w_i and measurement noise v_i are also polyhedrally constrained with c_w and c_d inequalities, as given in (9) and (10).

Given N discrete-time affine models, there is a $I = \{1, \ldots, I\}$ model pair and let the mode $i \in \{1, \ldots, I\}$ denote the pair of models (i, j). Then, concatenating $\mathbf{x}_{t,i}$, $\mathbf{u}_{t,i}$, $\mathbf{d}_{t,i}$, $\mathbf{w}_{t,i}$, $\mathbf{z}_{t,i}$, $\mathbf{v}_{t,i}$, $\mathbf{v}_{t,i}$, and $\mathbf{v}_{t,i}$ for each model pair, we define

$$
\mathbf{z}_{t,i} = \mathbf{v}_{t,i}^T \mathbf{x}_{t,i}(k), \quad \mathbf{v}_{t,i} = \mathbf{v}_{t,i}^T \mathbf{u}(k), \quad \mathbf{w}_{t,i} = \mathbf{v}_{t,i}^T \mathbf{w}(k),
$$

The states and outputs over the entire time horizon for each mode i can be written as simple functions of the state \mathbf{x}_i, input vectors \mathbf{u}_i, \mathbf{d}_i, \mathbf{w}_i and \mathbf{v}_i:

$$
M_i \mathbf{x}_{t,i} + \mathbf{G}_{u,i} \mathbf{u}_{t,i} + \mathbf{G}_{d,i} \mathbf{d}_{t,i} + \mathbf{G}_w \mathbf{w}_{t,i} + \mathbf{F}_i \mathbf{z}_{t,i} + \mathbf{G}_s \mathbf{s}(k) = \mathbf{0},
$$

where \mathbf{u}_i, \mathbf{d}_i, \mathbf{w}_i, and \mathbf{v}_i are chosen based on the application at hand.

3. PROBLEM FORMULATION

We consider the active model discrimination problem among a finite number of uncertain nonlinear models, i.e., to design a separating admissible input for the system such that when the system is excited with this input, any observed trajectory is consistent with only one model, regardless of any realization of uncertain parameters. In addition, we minimize a cost function $J(u)$, as follows:

Problem 1. (Active Model Discrimination). Given N well-posed nonlinear models \mathbf{G}_i, and state, input and noise constraints, (3),(6),(8)-(10), find an optimal input sequence u_T^\ast to minimize a given cost function $J(u_T)$ such that for all possible initial states \mathbf{z}_0, uncontrolled input d_T, process noise w_T and measurement noise v_T, only one model is valid, i.e., the output trajectories of any pair of models have to differ in at least one time instance.

The above problem is in general computationally intractable with no optimality guarantees, as it would result in a mixed-integer nonlinear program (MINLP). Thus, we propose a two-step approach to tackle this problem. The first subproblem (Problem 1.1) is to over-approximate the nonlinear dynamics in (1) by uncertain affine models (for each $i \in \mathbb{Z}^+_0$): subject i omitted below for brevity), as abstractions that preserve (or “contain”) all its system behaviors. This is a common systematic approximation approach in the literature on hybridization [Asarin et al. (2007); Althoff et al. (2008); Ding et al. (2010)].

Problem 1.1. (Affine Abstraction). Given a nonlinear n-dimensional vector field $f(\mathbf{x}, \mathbf{u}, \mathbf{w})$ (with (polytope) domain $\mathbf{x} \in \mathbf{X}, \mathbf{u} \in \mathbf{U}, \mathbf{w} \in \mathbf{W}$, find two n affine planes (i.e., upper and lower planes defined by matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ and vectors \mathbf{f}, \mathbf{f}) such that they “contain” (i.e., upper- and lower bound) the given vector field with minimum separation, as expressed by the following:

$$
\begin{align*}
\max \quad & \mathbf{A} \Delta \mathbf{A} + \lambda_1 \mathbf{B} + \lambda_2 \mathbf{C} + \lambda_3 \mathbf{f} \\
\text{subject to} & \quad \mathbf{A} \mathbf{X} + \mathbf{B} \mathbf{u} + \mathbf{C} \mathbf{w} + \mathbf{f} \leq (\mathbf{2}, \mathbf{u}, \mathbf{w}), \\
& \quad (\mathbf{2}, \mathbf{u}, \mathbf{w}) \leq \mathbf{A} \mathbf{X} + \mathbf{B} \mathbf{u} + \mathbf{C} \mathbf{w} + \mathbf{f} \\
& \quad ||\mathbf{A} - \mathbf{A}|| \leq \Delta, ||\mathbf{B} - \mathbf{B}|| \leq \Delta, ||\mathbf{C} - \mathbf{C}|| \leq \Delta, ||\mathbf{f} - \mathbf{f}|| \leq \Delta,
\end{align*}
$$

where λ_1, λ_2 and λ_3 are tuning weights and suitable norms are chosen based on the application at hand.

Then, using the resulting set of uncertain affine models that conform to the modeling framework in Section 2.3, we consider the following second subproblem (Problem 1.2):

Problem 1.2. (Active Affine Model Discrimination). Given N well-posed affine models \mathbf{G}_i, and state, input and noise constraints, (3),(6),(8)-(10), find an optimal input sequence u_T^\ast to minimize a given cost function $J(u_T)$ such that for all possible initial states \mathbf{z}_0, uncontrolled input d_T, process noise w_T and measurement noise v_T, only one model is valid, i.e., the output trajectories of any pair of models have to differ in at least one time instance. The optimization problem can be formally stated as follows:

$$
\begin{align*}
\min_{u_T} \quad J(u_T) \quad \text{s.t.} \quad & \forall k \in \mathbb{Z}^+_0 : (7) \text{ hold,} \\
& \forall i,j \in \mathbb{Z}^+_0, i < j, \forall k \in \mathbb{Z}^+_0 : \mathbf{V}(\mathbf{z}_0, \mathbf{u}_T, \mathbf{d}_T, \mathbf{w}_T, \mathbf{v}_T) + \mathbf{v}_T^T \mathbf{u}_T + \mathbf{u}_T^T \mathbf{u}_T \geq 0, \quad \text{for all } \mathbf{z}_0 \\
& \forall k \in \mathbb{Z}^+_0 : \mathbf{z}_0(k) \neq \mathbf{z}_1(k),
\end{align*}
$$

Using the two-step design, the discrimination guarantees in Problem 1.2 also hold for the original nonlinear models because the affine abstraction in Problem 1.1 is designed such that any properties that hold for the abstraction also hold for the original nonlinear models. Our approach has
the advantage of “divorcing” the difficulty associated with optimization problems with nonlinear constraints from the active model discrimination problem, providing insight into whether the nonlinearity is the bottleneck or if the active discrimination problem itself is ill-posed. However, the solution is, by construction, suboptimal. Nonetheless, the designed separating input guarantees that all output trajectories of all the nonlinear models are distinguishable from each other under any realization of uncertainties in the initial condition, model discrepancies or noise.

4. AFFINE ABSTRACTION

In this section, we address Problem 1.1. Since the robust formulation given in Problem 1.1 cannot be directly implemented using standard optimization packages, we will convert the problem into a more amenable form such that off-the-shelf optimization tools can be applied. For simplicity, we first describe our approach for a 1-dimensional vector field with interval domains, before describing how this can be extended to higher dimensional systems. Moreover, we will assume in the following discussion that there is at most one local optimum in the domain \(X, U, W \). This can also be extended to the case with multiple local optima.

Theorem 1. (Affine Abstraction). Given a nonlinear 1-dimensional differentiable vector field \(f(\tilde{x}, \tilde{u}, w) \) with interval domains \(\tilde{x} \in X, \tilde{u} \in U, w \in W \), two affine planes (i.e., upper and lower planes defined by \(\tilde{A}, \tilde{B}, \tilde{B}_u, \tilde{B}_w \) and vectors \(\tilde{f}, \tilde{f} \)) that contain the given vector field with high minimum separation are solutions to:

\[
\min_{\tilde{A}, \tilde{B}, \tilde{B}_u, \tilde{B}_w} \tilde{f}, \tilde{f}
\]

subject to

\[
\tilde{A} \tilde{x}_u + \tilde{B}_u \tilde{u}_u + \tilde{B}_w \tilde{w}_u + \tilde{f}(\tilde{x}_u, \tilde{u}_u, \tilde{w}_u, \tilde{f}) = 0,
\]

where \(\tilde{A}, \tilde{B}, \tilde{B}_u, \tilde{B}_w \) are tuning weights (chosen based on the application), \(X, U, W \) are the sets of endpoints of the interval domains \(X, U, W \), respectively, \(\tilde{x}_u, \tilde{u}_u \) and \(\tilde{w}_u \) are the local optimum for the difference between the upper plane and function \(f \), and similarly, \(\tilde{x}_u, \tilde{u}_u \) and \(\tilde{w}_u \) for the bottom plane, while \(\land, \lor \) are logical AND and OR operators 1 and \(\nabla \) denotes the derivative operator with respect to variable \(i \in \{ x, u, w \} \).

Proof. The optimization formulation above is as in Problem 1.1 except that the semi-infinite constraints (16a) are replaced by readily implementable constraints (18a), (18c), (18b). This is possible because the maximum of a differentiable (thus, continuous) function over a closed domain is the maximum of its local optima (i.e., minima, maxima or saddle points) in its interior (i.e., (18b)) and the maximum over its boundaries (i.e., its endpoints; (18a)).

The same holds for minimization over a closed domain, resulting in (18a) and (18c) for the lower plane.

Eq. (18a) is required such that the upper and lower planes upper- and lower-bound each boundary/endpoint of the domains. On the other hand, Eqs. (18b) and (18c) are such that the local optima, which are given by their first order necessary condition (i.e., their first order derivative is set to zero), are also upper- and lower-bounded by the two planes, respectively. The constraints with logical operators are to be understood to be in conjunction with the other constraints, and has the interpretation that only the local optima in the given domain needs to be upper- or lower-bounded by the two planes. Finally, Eq. (18d) along with the objective function ensures that the upper plane remains above the lower plane and that the separation between the two planes is as small as possible.

To extend the above formulation to higher dimensions, the key difference from the 1-dimensional case is that the boundaries of the domain are higher dimensional facets as opposed to line segments. To deal with this, the above procedure of replacing the maximization or minimization over a domain with the maximizing or minimizing over the local optima (using first order optimality condition for constrained optimization) and its boundaries as in (18a), (18c), (18b) can be repeated to recursively reduce the dimension of the boundaries by one until we obtain line segments. This procedure may be tedious to implement for systems with high dimensions and domains with many facets, hence, in practice, we may start with only constraints on the vertices and iteratively add facets of the domain of interest when the resulting planes are found to intersect them. Further effort to reduce the complexity of this procedure is the subject of ongoing research.

5. ACTIVE MODEL DISCRIMINATION APPROACH

We now extend and modify the approach in Ding et al. (2018) to solve Problem 1.2 with given uncertain affine models from Section 4. This approach relies on formulating the problem as a bi-level optimization problem which is then converted to a single level MILP using KKT conditions, for which off-the-shelf softwares are readily available, e.g., [Gurobi Optimization (2015)]. For the sake of clarity, we will defer the definitions of certain matrices in the following results to the appendix. Moreover, for brevity, the proofs of this approach are omitted, as they follow similar steps to the proofs in [Ding et al. (2018)].

Theorem 2. (Discriminating Input Design as an MILP). Given a separability index \(\varepsilon \), the active model discrimination problem (Problem 1.2) is equivalent (up to \(\varepsilon \)) to:

\[
\begin{align*}
\min_{w_T, \hat{\delta}^x, \hat{\delta}^w, \mu_1, \mu_2, \mu_3} & J(w_T) \\
\text{s.t.} & \quad Q_u w_T = \bar{q}_u, \\
& \forall i \in Z^{+}_w: \quad \delta^i(w_T) \geq \epsilon, \quad 0 = 1 - \mu_3^T \xi, \\
& 0 = \sum_{j=1}^m \mu_i H_j(i, m) + \sum_{j=1}^m \mu_2 R_j(j, m) + \sum_{k=1}^m \mu_2 R_{i(k)j} k, m) \forall m = 1, \ldots, n, \\
& \tilde{R}_{j,i} \hat{\delta}^i - \tilde{S}_{j,i} w_T \leq 0, \forall \mu_3 \geq 0, \forall j = 1, \ldots, \xi, \\
& \tilde{R}_{i,k} \hat{\delta}^x - \tilde{S}_{i,k} w_T \leq 0, \forall \mu_2 \geq 0, \forall k = 1, \ldots, p, \\
& \forall i \in Z^{+}_w, \forall j \in Z^{+}_w: \quad \text{SOS-1:} \quad \{ \mu_1, \tilde{H}_{j,i} \hat{\delta}^i - h_{j,i} \}, \\
& \forall i \in Z^{+}_w, \forall j \in Z^{+}_w: \quad \text{SOS-1:} \quad \{ \mu_2, \tilde{R}_{j,i} \hat{\delta}^i - r_{j,i} - \tilde{S}_{j,i} w_T \}, \\
& \forall i \in Z^{+}_w, \forall j \in Z^{p}_w: \quad \text{SOS-1:} \quad \{ \mu_3, \tilde{R}_{i,k} \hat{\delta}^i - \delta^x - r_{i,k} + \tilde{S}_{i,k} w_T \},
\end{align*}
\]

1 Logical operators are implementable by off-the-shelf softwares, e.g., YALMIP [Loefberg (2004)], and if needed, converted to mixed-integer constraints.
where μ^1_i, μ^2_j and μ^3_j are dual variables, while $\tilde{H}^i_{z,k}$ is the i-th row of H^i_{z}, \tilde{R}^1_i and $\tilde{S}^1_{j,k}$ are the j-th row of R^1_i and $S^1_{j,k}$ respectively, \tilde{R}^2_i and $\tilde{S}^2_{j,k}$ are the k-th row of R^2_i and $S^2_{j,k}$ respectively, $n = 2TT(n + m_o + m_u + m_v)$ is the number of columns of H^i_{z}, $\kappa = 2TT(c_o + c_w + c_v)$ is the number of rows of H^i_{z}, $\xi = 2TT(c_o + c_v)$ is the number of rows of R^1_i and $\rho = 2TTp$ is the number of rows of R^2_i.

Note that the result above is an extension of Ding et al. (2018). Although the notations of matrices and vectors look similar, their definitions are rather different.

6. APPLICATION EXAMPLE: ACTIVE INTENTION IDENTIFICATION IN LANE CHANGE SCENARIO

In this section, we apply the active model discrimination approach proposed in the previous sections to design a separating control input that, in conjunction with a modified model invalidation algorithm (e.g., Harirchi and Ozay (2015); Harirchi et al. (2017a, 2018)), can be used for active intention identification in a highway lane change scenario (cf. [Figure 1, Ding et al. (2018)]).

6.1 Vehicle and Intention Models

The dynamics of the ego vehicle is of the Dubins car [Dubins (1957)] with acceleration input:

$$\dot{x}_e = v_o \cos \phi_e, \dot{y}_e = v_o \sin \phi_e, \dot{\phi}_e = u_1 + w_1, \dot{v}_o = u_2 + w_2,$$

where the other car dynamics is described by:

$$\dot{x}_o = v_o, \dot{\phi}_o = d_1 + w_3,$$

where x_e and y_e are the longitudinal and lateral coordinates of the ego car, v_o is its speed and ϕ_o is its heading angle, while x_o is the longitudinal coordinate of the other car with its speed given by v_o (no lateral movement), with process noise signals $w_1,j \in \{1,2,3\}$.

In $U_1 \triangleq [-7.848,3.968]$ and $u_2 \in U_o \triangleq [-0.44,0.44]$, the acceleration and steering inputs of the ego car, whereas d_1 is (uncontrolled) acceleration input of the other car for each intention $i \in \{I,C,M\}$, corresponding to an Inattentive, Cautious or Malicious driver.

The Inattentive driver is unaware of the ego car and maintains his speed using an acceleration input which lies in a small range $d_1 \in D_I \triangleq [-0.392,0.198]$. The Cautious driver tends to yield the lane to the ego car with the input equal to $d_C \triangleq -K_{d,M}(v_o - v_a) + L_{p,C}\phi_e + L_{d,M}\phi_e + d_C$ where $\dot{\phi}_e = u_2 + w_2, K_{d,M} = 1, L_{p,C} = 12$ and $L_{d,M} = 14$ are PD controller parameters and the input uncertainty is $\tilde{d}_C \in D_C = D_I$. Finally, the Malicious driver does not want to yield the lane and attempts to cause a collision with input equal to $d_M \triangleq K_{d,M}(v_o - v_a) - L_{p,M}\phi_e - L_{d,M}\phi_e + \tilde{d}_M$, if provoked, where $\dot{\phi}_e = u_2 + w_2, K_{d,M} = 0.9, L_{p,C} = 12$ and $L_{d,M} = 14$ are PD controller parameters and the input uncertainty satisfies $\tilde{d}_M \in D_M = D_I$.

Without loss of generality, we assume that the initial position and heading angle of the ego car are 0, while the initial velocities match typical speed limits of the highway. Moreover, both cars are close to the center of their lanes that are 3.2 m wide. Thus, the initial conditions are:

$$v_o(0) \in [23,27] \text{ m/s}, y_o(0) \in [23,27] \text{ m}, x_o(0) \in [10,12] \text{ m}.$$

Further, the velocity of the ego car is constrained to be between $[20,30] \text{ m/s}$ at all times (in order to obey the

6.2 Affine Abstraction

The Dubins vehicle and intention models above are nonlinear. Hence, we resort to the approach in Section 4 to obtain affine abstractions of the models. Since the nonlinearity only affects the speed v_o and the heading angle ϕ_o, we first define a suitable domain that is appropriate for the lane changing scenario. Specifically, we consider the speed of the ego car to be between 20 m/s to 30 m/s (72 to 108 km/h) and a heading angle range of -25° to 25° ($[-0.44,0.44]\text{rad}$). Using this domain, we can obtain an affine abstraction for the reduced 2-dimensional system with $A_1 = 1000, A_2 = 1000$ and 0-c Norms, as illustrated by Figure 1, and using the compact interval matrix representation, the abstracted open-loop model is given by:

$$A = \begin{bmatrix} A & \mathcal{A} \end{bmatrix} = \begin{bmatrix} (1,3) : 0.9947,0.9956 & (1,4) : 2.3821; \\ 2,3 \end{bmatrix}, B = \begin{bmatrix} \mathcal{B} \end{bmatrix} = \begin{bmatrix} \mathcal{F} \end{bmatrix} = \begin{bmatrix} (1,1) : -3.7471,0.2859; \\ (1,2) : [0.4143,0.4725] \end{bmatrix},$$

where we used a sparse matrix notation with the size indicated in the subscript.

Combining the abstraction with the intention models and using Euler method for time-discretization with sampling time $\delta t = 0.4$ s, we have the following intention models:

Inattentive Driver ($i = I$):

$$A_I = I + \delta A_I, \mathcal{A}_I = I + \delta \mathcal{A}_I,$$

$$B_I = B_I = \mathcal{B}_I = \mathcal{B}_I, C_I = I + \delta \mathcal{A}_I \mathcal{J}_I = \mathcal{J}_I.$$

Cautious Driver ($i = C$):

$$\dot{A}_C = (6,3) - K_{d,M}(v_o - v_a) + L_{p,C} \phi_e + L_{d,M} \phi_e, B_C = \mathcal{B}_C = \mathcal{B}_C, C_C = I + \delta \mathcal{A}_C \mathcal{J}_C = \mathcal{J}_C.$$
Malicious Driver ($i = M$):

\[
\dot{\mathbf{A}}_M = [(6, 3) : -K_{d,M}; (6, 4) : L_{d,M}; (6, 6) : K_{d,M}]_{6 \times 6},
\hat{\mathbf{B}}_M = [(6, 2) : L_{p,M}]_{6 \times 3},
\mathbf{A}_M = \mathbf{I} + \delta(\hat{\mathbf{A}}_M - \mathbf{A}_M),
\hat{\mathbf{B}}_M = \hat{\mathbf{B}}_M - \hat{\mathbf{B}}_M = \delta(\mathbf{B} - \hat{\mathbf{B}}_M),
\mathbf{C}_M = C_M, D_M = 6, D_{e,M} = 1, f_M = \delta f_M - \delta f_M.
\]

6.3 Active Nonlinear Model Discrimination

Next, we apply the active model discrimination approach in Section 5 to the above uncertain affine models for the three intentions of the other driver in a highway lane changing scenario. Figure 2 shows the active inputs of the ego car to discern the other car’s intention based on its response when using various objective functions. When comparing the solutions with different norms as the objective functions, we observe that $\|u\|_1$ reduces the sum of absolute values, thus keeping all the data points as close to zero as possible, $\|u\|_2$ minimizes energy and may be desirable to reduce fuel consumption, and $\|u\|_\infty$ ensures comfort by minimizing the maximum absolute input values. In all solutions, the ego car accelerates and turns towards the other car’s lane, and then either maintains its speed or decelerates while re-aligning to its lane, although now laterally shifted toward the other car’s lane. Throughout the maneuver, the inattentive car coasts with small accelerations, the cautious car slows down when it observes the ego car turning to its lane and the malicious car tries to match the ego car’s position, causing a collision.

The obtained optimal separating input is then applied to the ego vehicle in real-time. After measurements are recorded for $T = 3$, the passive model discrimination approach based on model invalidation of each intention model (e.g., [Harirchi and Ozay (2015); Harirchi et al. (2018)]) can be applied to identify the intention of the other vehicle. This is guaranteed to find the true intention by design (see above definition of separating input).

7. CONCLUSION

This work considered the novel design of separating input signals in order to discriminate among a finite number of uncertain nonlinear models, using a two-step approach. First, we developed an optimization-based approach that is less conservative than existing methods to over-approximate nonlinear dynamics by uncertain affine models that contain all the system behaviors of the original nonlinear system. Then, we proposed one of the first active model discrimination algorithms for uncertain affine models, which includes the affine abstraction, hence, the nonlinear models. Finally, we demonstrated our approach on an example of intent estimation/identification in a lane changing scenario on a highway. For future work, we are interested to overcome the complexity of our affine abstraction approach and to reduce its optimality gap.

REFERENCES

